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Direct numerical simulations (DNS) of natural convection in a vertical channel by
Versteegh & Nieuwstadt (1998) are used for assessing the budget of the turbulent
heat flux θui and the temperature variance θ2, and for modelling the transport
equations governing these two properties. The analysis is confined to a simple fully
developed situation in which the gravitational vector, as the sole driving force, is
perpendicular to the only non-zero component of the mean temperature gradient.
Despite its simplicity, the flow displays many interesting features and represents a
generic case of the interaction of buoyancy-driven turbulent temperature and velocity
fields. The paper discusses the near-wall variation of the second moments and their
budgets, as well as possible scaling of θui and θ2 both in the near-wall region and away
from the wall. Various proposals for the Reynolds-averaged modelling are analysed
and new models are proposed for these two transport equations using the term-by-
term approach. An a priori test (using the DNS data for properties other than θui
and θ2) reproduced very well all terms in the transport equations, as well as their
near-wall behaviours and wall limits, without the use of any wall-topology-dependent
parameters. The computational effort is still comparable to that for the ‘basic model’.
The new term-by-term model of the θui and θ2 equations was then used for a
full simulation in conjunction with a low-Reynolds-number second-moment velocity
closure, which was earlier found to reproduce satisfactorily a variety of isothermal
wall flows. Despite excellent term-by-term reproduction of thermal turbulence, the
predictions with the full model show less satisfactory agreement with the DNS data
than a priori validation, indicating a further need for improvement of the modelling
of buoyancy effects on mechanical turbulence.

1. Introduction
One-point Reynolds-averaged Navier–Stokes (RANS) turbulence closures serve

currently as a basis of applied computational fluid dynamics (CFD). Despite noted
deficiencies, RANS models are used widely for computation of complex flows and
transport processes in various branches of industry. A continuous increase in com-
puting power stimulates further efforts towards improvement of the models, allowing
greater model complexity while maintaining the computational costs within affordable
limits. New incentive comes from direct numerical simulations (DNS), which provide
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information (albeit only for simple flow domains and at low Reynolds and Rayleigh
numbers) about the terms in averaged transport equations that are inaccessible to
any available measuring techniques.

Extensive validation over the past decade in an increasing variety of flows has
enabled a better distinction between the potential of various models. It is generally
recognized that the two-equation k-ε eddy-viscosity models with linear stress–strain
relations and their analogue for scalar fields cannot reproduce any flows with signif-
icant non-equilibrium effects, flows subjected to body forces or to any extra-strain
rates other than simple shear. In flows driven purely by thermal buoyancy, deficiencies
of isotropic eddy-diffusivity models by which the turbulent heat flux is expressed in
terms of the aligned component of the mean temperature gradient, are even more
transparent. For example, in a mixed layer heated from below, the major turbulent
heat flux in the vertical direction has no relation with the typically uniform mean
temperature. Likewise, in a boundary layer along a heated vertical wall the major
source of buoyancy-induced turbulence originates from the substantial vertical heat
flux, while the temperature gradient in the vertical direction is usually small or negli-
gible. These deficiencies can be cured by adopting the second-moment closure level,
either by solving in differential form the transport equations for second moments,
or as a basis for deriving truncated models in the form of algebraic expressions for
turbulent stress and scalar flux.

However, while inevitably more complex and computationally more demanding,
there is a view among the CFD community that these models have not fulfilled the
early expectation in demonstrating indisputable superiority over simpler two-equation
k-ε and similar models. DNS have also revealed how poorly most current closures,
including the second-moment ones, reproduce individual budget terms, even if the
mean flow properties are predicted well in accord with those obtained by DNS
or experiments. Because of these and other failures, there is a view that one-point
closures should be abandoned and replaced by the large-eddy simulation (LES)
technique as the future industrial computational tool. While such prospects may be
realistic for specific types of flows dominated by large eddy structures away from
solid walls, a wider application of LES to high-Reynolds-number flows in complex,
wall-bounded domains seems still distant. The same applies to buoyancy-driven flows
at high Rayleigh numbers, particularly in cases where the wall heat transfer is the
major prediction objective. The one-point RANS approach will remain for some time
the only viable means for complex industrial computations. Of course, improvements
are needed and possible, and this article outlines some prospects in that direction,
with a focus on buoyancy-driven flows and heat transfer along vertical walls.

It has been recognized that the second-moment closure models offer a sounder
framework for reproducing more accurately the turbulence dynamics and mean flow
properties. A major advantage is the possibility for exact treatment of some important
turbulence interactions (e.g. stress production, effects of rotation, buoyancy) or for
a sounder modelling of the remaining terms by introducing a stress/flux-anisotropy
parameter. However, higher-order models do not give a priori decisive advantages and
more reliable predictions in every flow situation. Because of a need to model many
more terms, the second-moment closures bring in more uncertainty and possibilities
for ill-founded and unrealistic models of specific interactions, which can annul the
natural advantages of the method. This is particularly the case for flows governed by
thermal buoyancy, for which the second-moment closures contain a large number of
terms which need to be modelled and for which scarce experimental and DNS data
are available. Because of this, relatively little effort has been put into the development
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of second-moment turbulence closure models that are suited for the thermal field,
especially when the flow is driven solely by thermal buoyancy.

Besides, buoyant flows are characterized by some specific features which cannot
be described by simple extrapolation of modelling principles, used for non-buoyant
turbulent flows. An example is the departure from local energy equilibrium both in
physical and spectral space. The large-scale coherent structures which govern the
turbulent transport e.g. in fluids heated from below, may generate a true (Boudje-
madi et al. 1997; Versteegh & Nieuwstadt 1998) or apparent (Kenjereš & Hanjalić
1995) counter-gradient diffusion, or may emphasize the role of pressure diffusion as
discovered by DNS in Rayleigh–Bénard convection (Wörner & Grötzbach (1997).
Buoyancy produces a unidirectional stratification and, depending on the orientation
of the temperature-gradient vector imposed by the boundary conditions with respect
to the gravitation vector, a variety of regimes may coexist in a single flow domain
even at relatively high bulk-Rayleigh numbers, ranging from stagnant fluid to laminar
circulation, the transitional regime and fully turbulent regions. This emphasizes the
role of molecular effects both close to a solid boundary and away from walls (at the
edge of turbulent flows) and the need to use models which can universally account
for low-Reynolds- and Péclet-number phenomena, irrespective of the wall vicinity. On
the other hand, strong variation of all flow properties in usually very thin boundary
layers along the walls, where the buoyancy has the strongest effects on turbulence,
requires a fine numerical resolution of the near-wall region and adequate modelling
of both the viscous and conduction effects as well as non-viscous, non-conductive
wall-blockage effects. To this one may add also a lack of universal scaling for different
boundary conditions (orientation of heated walls) which hampers any prospects for
computational bridging of the near-wall regions.

This study is aimed at assessing the current practice in modelling various terms in
the transport equation for the turbulent heat flux and temperature variance. It also
contributes towards the modelling of turbulent natural convection by presenting a
new differential thermal second-moment closure. The unclosed terms that appear in
the transport equations for the turbulent heat flux θui and temperature variance θ2

are remodelled using the results of DNS of natural convection in a vertical channel
(Versteegh & Nieuwstadt 1998) and the asymptotic analysis of turbulence velocity
and temperature correlations in the near-wall region. The analysis is confined to
vertical heated walls. For complementary DNS-based modelling of Rayleigh–Bénard
convection, the reader is referred to recent papers by Girimaji & Balachandar (1997),
Wörner & Grötzbach (1997) and Ye et al. (1997).

The proposed model requires a fine grid near the wall, which may still hinder its
wider application to very complex three-dimensional flows at high Reynolds numbers.
It is argued, however, that this approach may be unavoidable if wall heat transfer
is the focus. Successful reproduction of the near-wall second-moment statistics (in
addition to mean flow) qualifies this approach (in full or a truncated form) either for
steady or transient RANS computations. It can also serve as a basis for developing
a near-wall subgrid-scale model for LES, or for hybrid RANS/LES computations,
which are regarded as a promising route to predicting complex wall-bounded flows.

2. Flow specification, governing equations and methods of solution
Natural convection in a vertical channel is driven entirely by the thermal buoyancy

generated by the temperature difference between the opposing walls. Figure 1(a)
shows the flow geometry considered. The two flat walls of the channel are separated
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Figure 1. A schematic representation of the vertical-channel set-up (a) and
the three-dimensional box used for the direct numerical simulations (b).

by a distance L in the x-direction and extend indefinitely in the y- and z-directions.
Both walls are isothermally heated at fixed but different temperatures. The gravitation
vector gi is aligned with the walls and points downwards in the negative y-direction.
Buoyancy will force the flow upwards along the hot wall and downwards along the
cold wall. The vertical boundary layers are completely mixed (no stably stratified
core region) and the flow is fully developed and anti-symmetric with respect to the
mid-plane, which simplifies the numerical simulation.

The equations that describe the instantaneous (marked with primes) velocity and
temperature field are the unsteady three-dimensional momentum, continuity and
energy equations:

∂U ′k
∂xk

= 0, (2.1)

DU ′i
Dt

= −1

ρ

∂P ′

∂xi
+ ν

∂2U ′i
∂x2

k

− giβ(T ′ − Tref ), (2.2)

DT ′

Dt
= α

∂2T ′

∂x2
k

, (2.3)

where D/Dt = ∂/∂t + U ′k∂/∂xk denotes the material derivative and the indices
i = 1, 2, 3 correspond to the x-, y- and z-directions, respectively. Other symbols
have the standard meaning: ρ is the fluid density, ν is the kinematic viscosity, β
is the thermal expansion coefficient and α is the thermal diffusivity. The Boussinesq
approximation has been applied, which has little consequence at moderate temperature
differences for fluids with Prandtl numbers close to unity. The boundary conditions
at the walls are U ′i = 0, T ′ = Thot (left wall) and T ′ = Tcold (right wall). The
reference temperature Tref can be chosen arbitrarily and the average temperature
Tav = (Thot + Tcold)/2 is a common choice. The pressure P ′ in equation (2.2) actually
is the reduced pressure, i.e. relative to the hydrostatic pressure P0 + ρgkxk .

The DNS was performed by solving equations (2.1)–(2.3) numerically in time and
space for a three-dimensional box such as depicted in figure 1(b). Periodic boundary
conditions were applied at the domain boundaries in the y- and z-directions, at
sufficiently large height H and depth D for the correlation between the opposing
periodic boundaries to be negligibly small. Once available, the DNS enables the
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statistics of the flow (mean velocity, mean temperature, second and higher moments)
to be uniquely obtained by ensemble averaging a large number of realizations. In the
computation, the ensemble average is replaced by space averaging in the homogeneous
directions and/or time averaging over intervals much larger than the typical eddy-
turnover time and much smaller than time scales imposed by the boundary conditions.
A necessary condition is that the flow is statistically stationary and fully turbulent.
Versteegh & Nieuwstadt (1998) applied space averaging in the homogeneous y, z-
directions and time averaging.

DNS is at present the only method that can provide reliable information about the
instantaneous velocity, pressure and temperature field. However, because the smallest
time and length scales of the turbulence need to be resolved, DNS poses high demands
on available computer resources, especially at high Reynolds and Rayleigh numbers
and when the turbulence intensity and anisotropy is large. For more complex flows
of industrial relevance, the solution of modelled transport equations for the statistics
themselves offers a more rational route than the DNS approach. The conventional
splitting into the mean and fluctuation part (U ′i = Ui + ui, T

′ = T + θ, P ′ = P + p)
and ensemble averaging yields the following set of RANS equations for mean velocity
Ui and temperature T :

∂Uk

∂xk
= 0, (2.4)

DUi

Dt
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂x2
k

− giβ(T − Tref )− ∂uiuk

∂xk
, (2.5)

DT

Dt
= α

∂2T

∂x2
k

− ∂θuk

∂xk
, (2.6)

where the second moments, the turbulent-stress tensor uiuk and heat-flux vector θuk ,
which appear as a consequence of the loss of information due to averaging, need
to be modelled. This constitutes the primary objective of the present study. The
adopted level of modelling is the differential second-moment closure. In comparison
to the turbulent stress, relatively little has been published about the closure of the
equation for the turbulent heat flux, especially when temperature is not a passive
scalar. Therefore, we limit at present our scope to modelling the turbulent heat flux,
with the use of DNS data.

Earlier attempts in this direction were based on experiments, which provided only
a limited amount of information at a limited number of locations. The DNS data
provide all the information needed for term-by-term modelling of the second-moment
transport equations. For an isothermal channel flow, the potential of such an approach
has already been convincingly demonstrated by Mansour, Kim & Moin (1988). Here,
a similar exercise will be performed for natural-convection channel flow.

In devising the models, we aim at matching the DNS data as closely as possible,
while keeping the model relatively simple. Primarily, the effort is focused on accurate
near-wall modelling with full compliance with the mathematical constraints, such
as coordinate-transformation invariance, the two-component limit and realizability,
while eliminating the use of surface-topology parameters.

2.1. The DNS database

Several sets of DNS results for turbulent buoyant convection that have appeared
recently provide missing information which is inaccessible to experimental techniques.
Comprehensive data sets now available enable a deeper insight into the physics of
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such flows and an evaluation of the current modelling practice. They also provide
an incentive for deriving better models based on a more rigourous analysis of the
flow physics. Although most of the studies are confined to two basic cases, i.e.
Rayleigh–Bénard convection between two infinite horizontal plates heated from be-
low (Grötzbach 1982; Balachandar, Maxey & Sirovich 1989) and the flow between
two differentially heated vertical plates (Boudjemadi et al. 1997; Versteegh & Nieuw-
stadt 1998), these data enable a comparative study and model validation in two
generic situations in which the gravitational vector is either parallel or perpendicular
to the mean-temperature-gradient vector. DNS results are available also for more
complex cases such as turbulent natural convection in differentially heated cavities
with adiabatic upper and lower walls (two-dimensional simulations by Paolucci 1990,
and a three-dimensional case by Henkes & Le Quéré 1996), though at relatively low
Rayleigh numbers and focusing mainly on flow development and transition.

In this study, we consider only the thermal convection between vertical infinite
plates. The data of Versteegh & Nieuwstadt (1998) have been used for reference.
These seem more accurate than the results of Boudjemadi et al. (1997), because the
latter authors used a smaller solution domain both in the vertical and spanwise
direction. The flow is characterized by the Prandtl number Pr = ν/α = 0.709 and
the Rayleigh number Ra = gβ∆TL3Pr/ν2 = 5.4 × 105, 8.227 × 105, 2 × 106 and
5×106, corresponding to turbulent air flow at four different values of the temperature
difference. The smallest and the largest Rayleigh numbers differ by approximately
one decade. The aspect ratios of the computational box (see figure 1b) are H/L = 12
(height over width) and D/L = 6 (depth over width).

The DNS were performed using a standard finite-volume method with second-
order discretization schemes (Versteegh & Nieuwstadt 1998). With the application of
Richardson extrapolation on two grids, which differ by approximately a factor two,
the solutions were obtained with approximately fourth-order accuracy. The highest
grid resolution was taken to be Nx × Ny × Nz = 96 × 432 × 216. The distance
between the grid points is non-uniform in the x-direction, with the smallest grid cell
near the walls (∆xmin/L = 4.39 × 10−3) and the largest grid cell in the centre of the
channel (∆xmax/L = 1.31×10−2). The grid in the other two (homogeneous) coordinate
directions is uniform. The grid resolution was high enough to resolve the Kolmogorov
microscales at Ra = 8× 105, in compliance with the criterion proposed by Grötzbach
(1983). More details are provided by Versteegh (1998). The DNS database provides
all statistics as a function of x/L, interpolated on a uniform grid consisting of 200
(internal) grid points. The data include all first, second and third moments of velocity
and temperature and all budget terms of the Reynolds stress, turbulent heat flux
and temperature variance. The pressure terms in the budgets are first decomposed
into pressure transport and the pressure-scrambling correlations, which are further
decomposed into slow, rapid, buoyant and wall parts. The data have been non-
dimensionalized using the length scale L, the buoyant velocity scale Vb = (gβ∆TL)1/2

and the temperature scale ∆T .
The analysis of the DNS data revealed some specific features which have been the

subject of controversy. Because of the multiple mechanisms by which the turbulent
stress and heat flux are generated (mean rate of strain, buoyancy, mean temperature
gradient), the conventional stress–strain or flux–mean-temperature-gradient relations
as implied by the eddy-viscosity/diffusivity hypotheses are inappropriate. It is noted
that all three sources are of the same order of magnitude. The mean-shear turbulence
generation is negative close to the wall for all second moments, changing its sign
around the mean velocity maximum, whereas all stress and flux components are
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everywhere positive except for a very small (almost negligible) negative value of the
shear stress very close to the wall. These features emphasize the need to employ
the second-moment closure approach as a minimum modelling level. The pressure
scrambling is the dominant sink of the turbulent heat flux, whereas the molecular
dissipation is negligible, except close to the wall where it balances molecular transport.
Another interesting feature, contrary to for example the stress budget in a plane
channel or a plane Couette flow, is that the return-to-isotropy (slow) term is the
dominant constituent of the pressure-scrambling process for all heat-flux components
as well as for all stresses. The exception is the shear stress where the rapid term exceeds
all others in the pressure-scrambling term. The dominance of the nonlinear (slow)
term can be attributed to large relative fluctuations of temperature and velocity,
as compared for example with a forced, shear-dominated convection in a similar
configuration.

3. Term-by-term modelling of the thermal equations
The exact equation for the turbulent heat flux θui is:

Dθui
Dt

=
∂

∂xk

 α
∂θ

∂xk
ui + νθ

∂ui

∂xk︸ ︷︷ ︸
Dν
θi

−θuiuk︸ ︷︷ ︸
Dt
θi


︸ ︷︷ ︸

Dθi

−uiuk ∂T
∂xk︸ ︷︷ ︸

P th
θi

−θuk ∂Ui

∂xk︸ ︷︷ ︸
Pm
θi

−giβθ2︸ ︷︷ ︸
Gθi

−θ
ρ

∂p

∂xi︸ ︷︷ ︸
Πθi

− (α+ ν)
∂θ

∂xk

∂ui

∂xk︸ ︷︷ ︸
εθi

. (3.1)

The material derivative is zero in the present case and the terms on the right-hand
side of the equation are the viscous diffusion Dν

θi, turbulent diffusion Dt
θi, thermal

production P th
θi , mechanical production Pm

θi , buoyant production Gθi, temperature–
pressure-gradient correlation (‘pressure scrambling’) Πθi and the dissipation rate εθi.
The terms in boxes have to be modelled. The only unknown correlation in equation
(3.1) for which another transport equation is solved, is the temperature variance θ2.
The exact equation for θ2 is

Dθ2

Dt
=

∂

∂xk

α∂θ
2

∂xk︸ ︷︷ ︸
Dν
θθ

−θ2uk︸ ︷︷ ︸
Dt
θθ


︸ ︷︷ ︸

Dθθ

−2θuk
∂T

∂xk︸ ︷︷ ︸
Pθθ

− 2α
∂θ

∂xk

∂θ

∂xk︸ ︷︷ ︸
εθθ

. (3.2)

The budget terms can be assigned a physical meaning analogous to that above:
viscous diffusion Dν

θθ , turbulent diffusion Dt
θθ , production Pθθ and dissipation εθθ .

3.1. Wall limits

It is known that a solid wall exerts a strong effect on the turbulence both by
viscous and non-viscous suppression of turbulence fluctuations. While the viscous
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i 1 2 θ

Dν
θi 2(α+ 2ν)bθc1x (α+ ν)bθb2 2αb2

θ

D̂ν
θi 3(α+ ν)bθc1x (α+ ν)bθb2

Dp
θi −(1/ρ)bθap − (2/ρ)(bθbp + cθap)x

Φθi (1/ρ)bθap + (1/ρ)(bθbp + 2cθap)x (1/ρ)(∂bθ/∂y)apx

Πθi −(1/ρ)bθbpx (1/ρ)(∂bθ/∂y)apx

εθi 2(α+ ν)bθc1x (α+ ν)bθb2 2αb2
θ

Table 1. Near-wall behaviour of viscous diffusion, pressure terms and dissipation (leading terms of
their Taylor-series expansions). Note: terms in boxes are in balance at the wall. Models are denoted
with the ‘hat’ symbol.

effect is of a scalar nature, the non-viscous effect due to blockage (impermeability,
pressure reflection) is dependent on the wall proximity and configuration. In the flow
over heated walls the near-wall turbulence is further affected because the flow is
driven by the imposed wall conditions. As no universal scaling of flow properties
has been established for any class of flows driven by thermal buoyancy, prospects
for deriving wall functions for bridging the viscous and conductive layers are slim.
Consequently, the equations have to be integrated up to the wall with appropriate
low-Ret and non-viscous modifications. Modelling the wall effect is one of the prime
difficulties, but it is a crucial prerequisite for the simulation of flow properties near
walls, especially for the prediction of wall friction and heat transfer. It follows
from the DNS data that the Nusselt number Nu = −(L/∆T )(dT/dx )w scales with

approximately Ra1/3, which is a well-known engineering value (Ra1/4 for laminar
flow). Also, cf = (ν/V 2

b )(dV/dx)w ∝ Ra1/4 appears to be a reasonable assumption for
the friction coefficient.

Satisfying the limiting behaviour of the models at the wall is one of the basic
requirements of near-wall modelling. Expressions for the wall limits of all budget
terms can be derived by substituting Taylor-series expansions for the flow variables.
The pressure, velocity and temperature fluctuations can be expanded as follows:

p = ap + bpx+ cpx
2 + dpx

3 + · · · , (3.3)

ui = ai + bix+ cix
2 + dix

3 + · · · , (3.4)

θ = aθ + bθx+ cθx
2 + dθx

3 + · · · , (3.5)

with ai = b1 = aθ = 0 (no-slip condition, continuity and constant wall temperature).
The expansions for θui and θ2 then become, in a vertical channel,

θu = bθc1x
3 + (bθd1 + cθc1)x

4 + · · · , (3.6)

θv = bθb2x
2 + (bθc2 + cθb2)x

3 + (bθd2 + cθc2 + dθb2)x
4 + · · · , (3.7)

θ2 = b2
θx

2 + 2bθcθx
3 + (2bθdθ + c2

θ)x
4 + · · · . (3.8)

Similar expressions can be derived for the budget terms, of which only the leading
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origin: θu Dν
θ1 D̂ν

θ1 Dp
θ1, Φθ1 Πθ1 εθ1

bθc1: (177.3) 75.47 74.76 73.50

(1/ρ)bθap: −0.06262

(1/ρ)bθbp: (0.4063) 0.1730 0.1713 0.1913 0.1684

(1/ρ)cθap: −0.04592

origin: θν Dν
θ2, D̂ν

θ2, εθ2 Φθ2, Πθ2 θ2 Dν
θθ , εθθ

bθb2: 1.726 1.771

(1/ρ)(∂bθ/∂y)ap: −0.2680

b2
θ: 10.18 10.16

Table 2. Values of the correlations (one in each row), appearing in table 1, at Ra = 5.4 × 105.
Depending on the number of independent origins (one in each column) one or more values are
given.

terms are listed in table 1. The budget terms that are at least of second order in x
are omitted as their wall limits are considered to be less important. For illustration

and further discussion the wall limits are also shown for Φθi = (∂θ/∂xi)p/ρ and

Dp
θi = −(∂θp/∂xi)/ρ, the sum of which yields the total pressure scrambling Πθi.
The unknown correlations that appear in table 1 can be extracted from the DNS

data. The correlations bθap/ρ, bθb2 and b2
θ

are directly available through the wall values
of the budget terms in which they appear. The other correlations have to be deter-
mined from the near-wall slopes of the corresponding budget terms. These slopes are
shown in figure 2 for Ra = 5.4×105. The turbulent heat flux and the temperature vari-
ance are also included. The solid lines indicate xn proportionalities, with n = 1, 2 and
3. Table 2 contains the dimensionless values of all correlations from table 1 at Ra =
5.4× 105, with the origins indicated. Here the relationship bθbp/ρ = 2νbθc1 has been
used, which follows from the balance of terms of first order in x for i = 1. When deriv-
ing the values of correlations, the xn proportionality was assumed to be valid exactly.
This means that if the DNS data show a proportionality xr , with r slightly smaller than
n, the resulting value of the correlation is slightly too large. For n = 3, the deviation is
particularly significant. Consequently, the values derived from θu are placed between
brackets in table 2. It should be pointed out, however, that the deviation is restricted
to the data points nearest to the wall. These errors are, like the scatter in the remain-
ing values, probably caused by the Richardson-extrapolation technique (which applies
polynomial curve fitting) and the relative coarseness of the uniform grid near the wall.

In figure 3(a), the values from table 2 (except those between brackets) are dis-
played, together with the values at Ra = 8.227 × 105, 2 × 106 and 5 × 106. The
figure shows the Rayleigh-number dependence of the correlations with the present
non-dimensionalization. In an attempt to reduce the Rayleigh-number dependence,
we have replaced the lengthscale L by LRaa, the velocity scale Vb by VbRab

and the temperature scale ∆T by ∆TRac. Taking a linear least-squares fit with
a singular-value decomposition and discarding the extremely deviating value of bθb2

at Ra = 5× 106, the best overall scaling is achieved with a = −0.2229, b = −0.03359
and c = 0.04695. Figure 3(b) shows the Rayleigh-number dependence using the new
non-dimensionalization. The dependence has indeed decreased for most correlations,

but the correlations cθap/ρ, bθb2 and (∂bθ/∂y)ap/ρ still show a significant variation
with Ra.
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Figure 2. The near-wall slopes of (a) θui (©, i = 1; 4, i = 2) and θ2 (�), (b) Dν
θ1 (©), D̂ν

θ1 (4) and
εθ1 (�), (c) −Dp

θ1 + Dp
θ1|w (©), Φθ1 − Φθ1|w (4), −Πθ1 (�) and −Πθ2 (�), all at Ra = 5.4× 105.

Rayleigh- and Reynolds-number independence is an important criterion for judging
the model generality. In this study, the best we can show is that the model performs
almost equally well over one decade of Rayleigh numbers (the range for which the
DNS data are available). A proof of the Ra independence can be displayed only if
proper scaling is applied separately for the near-wall and in the central region of the
channel. Figure 4(a) shows the thermal-to-mechanical time-scale ratio R = θ2ε/(kεθθ)
for all four Rayleigh numbers. At x/L = 0.5, R is approximately proportional to
Ra−0.11. This is still a reasonable assumption down to x/L = 0.1. However, for
x/L < 0.1, it is clearly no longer valid. In figure 4(b), the turbulent Prandtl number

σT = (uv dT/dx)/(θudV/dx) has been displayed. In the region 0.2 < x/L < 0.5, σT is
scattered around the constant value 0.9, which is a common choice in most turbulence
models. Closer to the wall, the profiles at the different Rayleigh numbers depart when
they approach the singularity at the velocity maximum around x/L = 0.07.

3.2. Diffusion

In contrast to the Reynolds-stress and temperature-variance transport equations,
molecular diffusive transport of θui has to be modelled. A model (models are marked
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Figure 3. The correlations bθc1 (©), −bθap/ρ (4), bθbp/ρ (�), −cθap/ρ (�), bθb2 (×), −(∂bθ/∂y)ap/ρ

(+) and b2
θ (∗) at several Rayleigh numbers (Ra1 = 5.4 × 105) before (a) and after (b) rescaling.

Multiple symbols for each correlation at a Rayleigh number correspond to various origins, from
which the correlations were deduced, see table 2.

c
(1)
θ c

(2)
θ c

(1)
θθ c

(2)
θθ c

(3)
θθ R

0.11 0.22 0.05 0.11 0.22 0.5

Table 3. The coefficients appearing in the diffusion and dissipation models.

with the ‘hat’ symbol) that satisfies the near-wall balance and the wall values (see
table 1) is given by the first line of the following equation:

D̂ν
θi =

1

2
(α+ ν)

∂2θui

∂x2
k

= Dν
θi +

1

2
(α− ν)θ∂

2ui

∂xk
− 1

2
(α− ν)∂

2θ

∂x2
k

ui. (3.9)

The second line shows that viscous diffusion does not need modelling when Pr = 1. It
can be shown, using the DNS data of Versteegh & Nieuwstadt (1998), that equation
(3.9) is an excellent model for the present problem. Due to a large difference between
the typical scales of the fluctuations and their second derivatives, the correlations in
the last two terms of equation (3.9) are small.

The turbulent-diffusion term of the turbulent-heat-flux budget contains the triple
correlation θuiuk . The usual modelling strategy is to simplify the (exact) transport
equation for the triple correlation to an algebraic expression in terms of known
quantities (see Hanjalić & Launder (1972) for uiujuk). The simplification consists



222 H. S. Dol , K. Hanjalić and T. A. M. Versteegh
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Figure 4. The time-scale ratio R (a) and the turbulent Prandtl number σT (b) at several Rayleigh
numbers (–©– : Ra = 5.4× 105, –4– : Ra = 8.227× 105, –�– : Ra = 2× 106, –�– : Ra = 5× 106).

of neglecting all terms containing the derivatives of third moments, except for the
pressure term, and expressing the fourth moments in terms of second moments using
the zero-fourth-cumulant hypothesis of Millionshchikov (see Monin & Yaglom 1975).
By modelling the pressure term with a linear ‘slow’ model, the following expression is
obtained:

D̂t
θi =

∂

∂xk

[
cθ
k

ε

(
ukul

∂θui

∂xl
+ uiul

∂θuk

∂xl
+ θul

∂uiuk

∂xl

)]
(3.10)

with usually cθ = 0.11 (c(1)
θ , see table 3). The last term of equation (3.10), which has a

character of an additional source in the equation for θui, is often omitted, providing
a simpler expression which consists of heat-flux gradients only and which is still

invariant under coordinate rotation. Dol, Hanjalíc & Kenjeres̆ (1997) showed that
this simplification is useful and appropriate for the present vertical channel. If the
second term is also omitted, the well-known gradient-diffusion hypothesis of Daly
& Harlow (1970) is obtained. That model, which is not invariant and is inferior to
the former one (see Dol et al. 1997), needs a larger coefficient, such as 0.22 (c(2)

θ , see
table 3).

A model for turbulent diffusion of the temperature variance can be derived in the
same way. In this case, however, the production of the triple correlation θ2uk needs
to be included for acceptable performance (Dol et al. 1997). The invariant model
expression is

D̂t
θθ =

∂

∂xk

[
cθθ
k

ε

(
ukul

∂θ2

∂xl
+ 2θul

∂θuk

∂xl
+ 2θ̂ukul

∂T

∂xl

)]
, (3.11)
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θ̂uiuk = −c(2)
θ

k

ε

(
ukul

∂θui

∂xl
+ uiul

∂θuk

∂xl

)
. (3.12)

Only thermal production is included, because this is the only non-zero production
budget term of θ2u. The full expression needs cθθ = 0.05 (c(1)

θθ , table 3). Omitting the

last term of equation (3.11) leads to the usual invariant model with cθθ = 0.11 (c(2)
θθ ,

table 3). The Daly & Harlow model, with cθθ = 0.22 (c(3)
θθ , table 3), is obtained when

only the first term is retained.

3.3. Dissipation

The dissipation rate of the turbulent heat flux is usually neglected. Although this is
justified only when the turbulence is isotropic, at least at the smallest scales, in the
flow considered here the DNS show that this is indeed a relatively small budget term,
even near the walls where the largest and smallest scales are comparable. Unlike for
the Reynolds stress, the dissipation does not balance the production. Instead, the
production of θui is balanced mainly by the (total) pressure scrambling, which is a
negative budget term throughout the channel. The dissipation of θui merely balances
viscous diffusion in the near-wall region. The following dissipation model satisfies the
above condition near a solid wall:

−ε̂θi = −f∗ε∗θi − ε′θi, (3.13)

−ε∗θi = −1

2

(
1 +

1

Pr

)
ε

k
θui, (3.14)

−ε′θi = −1

2
D̂ν
θi +

1

4

(
1 +

1

Pr

) Dν
k

k
θui, (3.15)

f∗ = exp (− 3
4
A3/2), (3.16)

where A is a stress invariant (see the next subsection). This model is obtained
following Hanjalić, Jakirlić & Ristorcelli (1997b) for the dissipation of the Reynolds-
stress tensor. A slight disadvantage of the model is that it contains the second

derivative of k = u2
i /2 (Dν

k = ν∂2k/∂x2
k), which necessitates a fine grid for accurate

solutions. However, unlike other published models, which apply topology-dependent
parameters such as wall normals or distances (e.g. Peeters & Henkes 1992), the model
proposed here satisfies wall constraints using only local flow properties. In figure 5,
equation (3.13) is evaluated by feeding the DNS results for variables on the right-hand
side of equations (3.13)–(3.16) and compared with the DNS data for εθi. The figure
shows that the new dissipation model performs equally well at all available Rayleigh
numbers. Note that the scale in figure 5(a) is much finer than in figure 5(b) because
εθ1 � εθ2, so that a failure to reproduce the second peak in εθ1 in the near-wall region
is not a serious deficiency of the model as a whole.

In the transport equation for the temperature variance, beside turbulent diffusion,
only the dissipation needs modelling. Contrary to a common belief, the dissipation
rate εθθ is not the weak spot of the closure. For a vertical channel, it appears to be
sufficient to assume a constant thermal-to-mechanical time-scale ratio R. The model
then becomes ε̂θθ = εθ2/(Rk). From figure 4(a), it follows that R = 0.5 is a good
choice for 0.1 < x/L < 0.5 at Ra = 5.4 × 105. Close to a wall for x/L < 0.1, R
varies substantially exhibiting a peak around x/L ≈ 0.05, but this behaviour has
a much smaller effect on ε̂θθ than expected. In § 4, it will be demonstrated that,
together with the full model for turbulent diffusion (i.e. all terms of equation (3.11)),
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Figure 5. Performance of the new dissipation model at several Rayleigh numbers. For x/L < 0.5:
model (—, Ra = 5.4 × 105; · · ·, Ra = 8.227 × 105) evaluated/compared with DNS (–©–,
Ra = 5.4×105; –4–, Ra = 8.227×105). For x/L > 0.5: model (—, Ra = 2×106; · · ·, Ra = 5×106)
evaluated/compared with DNS (–©– : Ra = 2× 106, –4– : Ra = 5× 106).

R = 0.5 closes the equation very well, though for Ra = 5 × 106 R = 0.4 would
have been a better choice. This Rayleigh-number dependence, considered earlier, is
actually a larger problem than the x/L dependence. A possible solution is to adopt
R = min (2.2Ra−0.13

t , 0.75), which follows the DNS value for R at x/L = 0.5 accurately
and which is almost constant for 0.1 < x/L < 0.5 in the considered range of Rayleigh

numbers. In this expression, Ra t = gβ(θ2)1/2k9/2Pr/(ν2ε3) is the turbulence Rayleigh
number, which is a local property.

3.4. Pressure scrambling

The remaining budget term in the turbulent-heat-flux equation (3.1) that needs
(re)modelling is the pressure scrambling Πθi. Figure 6 shows that, of the unclosed
budget terms, the pressure scrambling is the most dominant one. Consequently,
accurate modelling of this term is crucial for the performance of the complete model.
Because pressure fluctuations are impossible to measure accurately, modelling and
validation of the correlations involving pressure depends completely on the availability
of DNS data.

The total pressure term Πθi can be written as the sum of Φθi = (∂θ/∂xi)p/ρ and

Dp
θi = −(∂θp/∂xi)/ρ. This splitting was originally introduced for the corresponding

term in the Reynolds-stress budget, because the pressure–strain term is redistributive
(i.e. tensor has zero trace) and the remaining pressure transport has a divergence
character. Although not unique (Lumley 1975), compared with other proposals this
splitting seems physically most justified and the only one which satisfies the two-
component limit and the condition of zero pressure transport in the homogeneous
(e.g. spanwise) direction in two-dimensional flows (Groth 1991). However, none of
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Figure 6. The DNS budget terms of θui at Ra = 5.4×105 for i = 1 (a) and i = 2 (b): viscous (–©–)
and turbulent (–4–) diffusion, thermal (–�–), mechanical (–�–) and buoyant (–×–) production,
pressure scrambling (–+–) and dissipation (–∗–).

the splittings proposed in the literature seems justified when dealing with a vector
quantity. Besides, the separate terms appear to be much more difficult to model than
the total pressure term. This is particularly true close to the wall where they exhibit
steep, though opposing, variations. This is also true for the pressure scrambling term
in the stress equation, and despite a clearer physical identification of the terms,
modelling the total term may prove to be more satisfactory. Dol et al. (1997) showed
that the pressure diffusion is substantial in the near-wall region, so that the standard
practice of neglecting this term is obviously incorrect. All these facts are in favour of
modelling Πθi as a whole and, by following this route, we do not consider pressure
diffusion any further.

Irrespective of whether the pressure scrambling term will be modelled in its orig-
inal or transformed form (i.e. without or with splitting), for further discussion of
the adopted modelling approach it is useful to recall the Poisson equation for the
correlation between the pressure fluctuations and any other fluctuating property φ
(here θ or ∂θ/∂xi) at a location xi inside the volume V bounded by the surface S:

φp

ρ
=

1

4π

∫
V

[
φ

(
∂2ukul

∂xk∂xl

)′
+ 2φ

(
∂ul

∂xk

)′(
∂Uk

∂xl

)′
+ gkβφ

(
∂θ

∂xk

)′ ]
dV
r

+
1

4π

∮
S

[
1

r

φ

ρ

(
∂p

∂n

)′
− φp′

ρ

∂(1/r)

∂n

]
dS (3.17)

where ∂/∂n is the outward normal derivative and r = ‖x′i − xi‖ (x′i is the running
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coordinate). The surface integral (Stokes, harmonic term) is expected to play an
important role in the near-wall flows (small r). The equation contains two-point
correlations and is of little direct use. However, the physical meaning of each of the
four terms can be identified. The linear character of the Poisson equation enables
separate DNS of each contributing term, as well as their separate modelling. We,
therefore, adopt the conventional route of expressing the pressure scrambling term as
a sum of four contributions corresponding to each term in the Poisson equation:

Πθi = Πθi,1 +Πθi,2 +Πθi,3 +Πw
θi . (3.18)

Here Πθi,1 represents pure turbulence interactions (the ‘return-to-isotropy’ or ‘slow’
term), Πθi,2 is the ‘rapid’ part involving the effect of mean strain, Πθi,3 is the buoyancy
contribution and Πw

θi is the wall-reflection (Stokes) term.
Decomposing the pressure correlation according to the terms in the Poisson equa-

tion simplifies modelling, as it presets an assumed conceptual framework confining
the attention only to the quantities appearing explicitly in this equation. It is noted
that the Poisson equation does not include directly the mean temperature gradient.
However, physical reasoning suggests that the mean temperature gradient undoubt-
edly affects the pressure scrambling process.† We, therefore, separately model each
term in equation (3.18), but merge the rapid and buoyant parts, which are in fact
both ‘rapid’ (see Lumley 1978, p. 144), enhanced with the mean-temperature gradient.

Figure 7 shows the terms in Πθi (equation (3.18)) provided by the DNS database
at Ra = 5.4 × 105. Versteegh & Nieuwstadt (1998) did not explicitly evaluate terms
in equation (3.17), but solved separately the Poisson equation for each part applying
homogeneous Neumann boundary conditions. The wall part follows from the Laplace
equation with the boundary conditions for the pressure fluctuation supplied by the
database. The figure shows that the slow part dominates the pressure scrambling and
that the wall part is relatively small.

3.4.1. Model of the slow term

In the absence of any turbulence production and source of anisotropy, the tur-
bulence interaction part Πθi,1 is expected to isotropize the turbulent flux θui. The
rate of isotropization will depend on the initial degree of anisotropy of both
the fluctuating temperature and velocity fields, which can be represented by θui,

aθij = θui θuj/θuk
2 − δij/3 and aij = uiuj/k − 2δij/3. In order to keep the model

relatively simple, we expand the expression with a quadratic and a cubic term. The
expression is still linear in θui and up to quadratic in aij (the latter to comply with
the quadratic model for the slow term in the stress equation), which is the complete
form of its tensorial expansion (Speziale, Sarkar & Gatski 1991):

Π̂θi,1 = − ε
k

(c1θθui + c′1θaijθuj + c′′1θaijajkθuk). (3.19)

The coefficients are given in table 4. For c′1θ = c′′1θ = 0 and c1θ constant, the model
reduces to the linear slow part of the basic model. The designation ‘basic model’
is generally used for the high-Ret second-moment closure of the 1970s, which is
characterized by the use of linear pressure-correlation models with wall-topology
parameters introduced to account for the wall-blockage effects (for a review, see

† Jones & Musonge (1983) proposed a lump model of both the slow and rapid terms for forced
scalar transport (no buoyancy), in which they included the mean temperature gradient, arguing that
both the mean velocity and mean temperature gradients appear in the exact equation for the slow
part, derived from the transport equation for the two-point correlation.
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Figure 7. Decomposition of Πθi at Ra = 5.4× 105 for i = 1 (a) and i = 2 (b): total (–©–), slow
(–4–), rapid (–�–), buoyant (–�–) and wall part (–×–).

c1θ c2θ c
(1)
3θ c

(2)
3θ cw

1θ cw

3.75 0.5 0.5 0.45 0.2 2.53

Table 4. The coefficients of the pressure-scrambling models. All of them, except for c(2)
3θ ,

are used in the basic model.

Launder 1989). For forced convection, Launder proposed c1θ = 3.0 (Gibson &
Launder 1978), which was also found by Hanjalić & Vasić (1993) to be a reasonable
value for buoyant flow, whereas Peeters & Henkes (1992) adopted c1θ = 3.75 for the
natural-convection boundary layer. Note the similarity between the basic slow model
and the dissipation model (3.14). However, figure 8 shows the linear model for c1θ = 1,
evaluated from the DNS data at Ra = 5.4 × 105, indicating clearly that the linear
model is inadequate: no value nor (scalar) function for c1θ will be able to match the
DNS data for both components. This was the reason for introducing higher-order
terms in the present work.

The quadratic and cubic terms in equation (3.19) are depicted in figure 8, with
c′1θ = c′′1θ = 1. Referring to Jones & Musonge (1983), Craft & Launder (1989) add
a fourth term, proportional to −kaij∂T/∂xj to equation (3.19), which they found
helpful in reproducing the experiment of Tavoularis & Corrsin (1985). The influence
on the predictions of the other flows tested is said to be small.

If the coefficients are kept constant, even with the inclusion of quadratic and cubic
terms, equation (3.19) cannot reproduce the DNS of Πθi,1, particularly close to the
wall. This can be demonstrated by solving equation (3.19) for three components using
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Figure 8. The slow part Πθi,1 (–©–) at Ra = 5.4 × 105 for i = 1 (a) and i = 2 (b) compared with
the variation of each, the linear (—), quadratic (· · ·) and cubic (– –), terms in equation (3.19) for
c1θ = c′1θ = c′′1θ = 1.

the DNS data to find the variation of coefficients c1θ , c
′
1θ and c′′1θ . In the flow considered

here only two components of the heat flux are non-zero and either a model with
two terms needs to be considered, or an additional constraint needs to be introduced.
Both options are discussed below, together with possible modelling of the coefficients
in terms of local invariant turbulence parameters. For this purpose we considered
invariants of the stress tensor, A2 = aijaji, A3 = aijajkaki and A = 1 − 9(A2 − A3)/8.
Figure 9(a) shows the variation of all three invariants as a function of x/L. It should
be recalled that A = 0 for two-component turbulence, such as found close to the walls
where u2 is much smaller than v2 and w2, and A = 1 for an isotropic stress field. In
the centre of the vertical channel A ≈ 0.66 indicating that the flow is not completely
isotropic. However, the fact that A is a local property that varies monotonically
between its extreme values with the strongest variation in the near-wall region, makes
it a very useful parameter. Besides, multiplying a model with An (n > 0) ensures that
the two-component limit is satisfied.

Figure 9(b) shows the well-known invariant map, introduced by Lumley & Newman
(1977). All realizable states of turbulence are within the triangle, with the limiting
states on its boundaries: three-component isotropy (A = 1) at (0, 0), two-component
isotropy at (−2/9, 2/3) and one-component turbulence at (16/9, 8/3). Anisotropic two-
component turbulence is marked by the straight line (A = 0), while the curved lines
(A2 = 6(|A3|/6)2/3) indicate the axisymmetric states of turbulence (axial component
smaller for A3 < 0, larger for A3 > 0). We see that both close to the walls and
in the centre the turbulence is almost axisymmetric. In this study, we only use
mechanical invariants. Our reasons for this decision are: (i) the Prandtl number
is close to unity; (ii) only the mechanical time scale k/ε is used (allowed as R
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Figure 9. (a) The stress invariants A2 (–©–), A3 (–4–) and A (–�–) as a function of the distance to
the wall. (b) The A2, A3 characteristic (–©–) enclosed by the Lumley triangle of realisable turbulence
states.

is approximately constant); (iii) a thermal analogy to the Lumley triangle does not
exist. Some thermal invariants have been proposed, such as the normalized correlation

function (θuk)
2/(θ2 u2

l ) or the more complicated mixed tensor of Shih, Lumley & Chen
(1988), but their interpretation is less straightforward and their use did not improve
our results.

When only two terms are retained in equation (3.19), a system of two equations (for
i = 1 and i = 2) with two unknowns (c1θ and c′1θ) results. The solution of the system
is displayed in figure 10(a) as a function of A. The figure shows that c1θ is positive,
c′1θ negative and −c′1θ/c1θ ≈ 1.4, which supports choices made in the literature. The
shapes of c1θ and c′1θ can be approximated by functions of the following type:

c1θ, c
′
1θ, c

′′
1θ ⊂ Fpqrs(A) =

p[1− exp(−qA)]

1 + r exp(−sA)
. (3.20)

The parameters r and s are mainly used for fine-tuning in the near-wall region. The
optimum set of shape parameters is given by table 5, ‘model 1’. The performance
of the resulting model is depicted in figure 10(b). A disadvantage of the model is
its sensitivity to the functions (3.20). For example, when only one function is used
together with −c′1θ/c1θ = 1.4, Πθi,1 exhibits substantial oscillations in the near-wall
region. The oscillations can only be suppressed by using two functions that are tuned
very accurately. This sensitivity decreases when the third term is added to the model.
The resulting system can only be solved when an additional ‘equation’ is posed. At
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Figure 10. (a) The ‘exact’ profiles for c1θ (–©–), c′1θ (–4–), their approximations (—, · · ·) and the
ratio −c′1θ/c1θ (–�–) when c′′1θ = 0. (b) The performance of the resulting slow model for i = 1
(—; –©–, DNS) and i = 2 (· · ·; –4–, DNS). All graphs are at Ra = 5.4× 105.

model 1 model 2

c1θ c′1θ c′′1θ c1θ c′1θ c′′1θ
p 6.4 −8.1 0 4.9 −2c1θ 12.9
q 4.0 5.5 3.6 ∞ 1.2
r 1.0 4.5 10 0 −0.94
s 20 28 37 10

Table 5. The values for the shape factors constituting Fpqrs(A) for the two new slow-part models,
optimized at Ra = 5.4× 105.

first, −c′1θ/c1θ = 1.4 seemed to be a natural choice. The corresponding solution for
c1θ and c′′1θ is displayed in figure 11(a). Obviously, the shapes will be very hard to
match. However, using −c′1θ/c1θ = 2 produced more convenient shapes, which were
easier to model, as shown in the same figure. The values of the shape parameters
for this case are also given in table 5, ‘model 2’. The shape of c′′1θ is more sensitive
to the ratio than c1θ . Both slow models are less satisfactory in the central channel
region due to the ‘tails’ in the profiles for c1θ and c′θ at A > 0.6, corresponding to
0.25 < x/L < 0.5. Because of the absence of such a tail in the profile for c′′1θ , the
second model is somewhat more accurate in the central region, although a deviation
remains in the other component. The non-physical ‘tails’ point out a deficiency of
equation (3.19), but fortunately this deviation is confined to the centre of the duct
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Figure 11. (a) The ‘exact’ profiles for c1θ (–�–) and c′′1θ (–�–) when −c′1θ/c1θ = 1.4 and for c1θ

(–©–), c′′1θ (–4–) and their approximations (—, · · ·) when −c′1θ/c1θ = 2. (b) The performance of
the resulting slow model for i = 1 (—; –©–, DNS) and i = 2 (· · ·; –4–, DNS). All graphs are at
Ra = 5.4× 105.

and has no effect on the model performance in the rest of the flow. In figure 12,
the performance of the slow-part models is depicted for all four Rayleigh numbers.
Surprisingly, the quadratic model is somewhat better for the highest two Rayleigh
numbers.

3.4.2. Model of the rapid and buoyant terms

Πθi,2 and Πθi,3 are interpreted as the action of pressure fluctuations to isotropize the
process of turbulence production due to mean strain rate and buoyancy, respectively.
In the absence of an exact foundation, the models of rapid and buoyant terms are
usually derived on the basis of representation theory (e.g. Lumley 1975). The mean
strain rate is taken outside the integral, assuming homogeneity or that the two-point
correlations are only significant for small r over which the mean flow does not change
appreciably. The remainder of the integral (higher rank tensor) is expressed in the
form of a tensorial expansion in terms of irreducible vectors and tensors (integrity
basis), formed from the quantities which appear in the integral. A number of the
coefficients are then deduced using symmetry and kinematic constraints. In the present
case this approach would lead to

Πθi,2/3 = Πθi,2 +Πθi,3 = Fi

(
θui, gi,

∂T

∂xi
, aij , Sij , Ωij

)
(3.21)

where Sij = 1
2
(∂Ui/∂xj + ∂Uj/∂xi) and Ωij = 1

2
(∂Ui/∂xj − ∂Uj/∂xi).
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Figure 12. The performance of the new slow models at several Rayleigh numbers. For x/L < 0.5:
quadratic (—, Ra = 5.4 × 105; · · ·, Ra = 8.227 × 105) and cubic (– –, Ra = 5.4 × 105;
–·–, Ra = 8.227 × 105) models evaluated/compared with DNS (–©–, Ra = 5.4 × 105; –4–,
Ra = 8.227× 105). For x/L > 0.5: quadratic (— , Ra = 2× 106; · · ·, Ra = 5× 106) and cubic (– –,
Ra = 2× 106; –·–, Ra = 5× 106) models evaluated/compared with DNS (–©–, Ra = 2× 106; –4–,
Ra = 5× 106).

Craft & Launder (1989) derived their rapid model from a general expression, linear
in the mean strain and turbulent heat flux and up to quadratic in aij (consistent
with their slow model), the parameters of which are determined by several kinematic
constraints and computer optimization for homogeneous shear flows and plane/round
jets. The resulting expression outweighs in complexity all other terms in the transport
equation for θui and contains a number of additional coefficients to be determined.
An analogous approach for the pressure–strain term in the stress equation, closed
with the Caley–Hamilton theorem, which satisfies the realizability conditions, requires
terms up to cubic in aij .

It should be recalled that the representation theorem and general tensorial ex-
pansion are purely kinematic and their success in representing a physical process
depends on the proper choice and availability of the irreducible vectors and tensors
which, in turn, depend on the model adopted as a whole. Nonlinear models may have
multiple roots which can lead to non-unique solutions even for a uniquely defined
steady flow. Speziale et al. (1991) pointed out that models which are nonlinear in
aij are inconsistent with the fact that the rapid part of the Poisson equation for the
pressure–strain correlation is linear in the energy spectrum. They also showed that
the general nonlinear tensorial expansion for the pressure-scrambling term in the
stress equation reduces exactly to the linear form for homogeneous two-dimensional
flow. More urgent than nonlinear expansion is the need to relax the mean-flow ho-
mogeneity assumption, particularly for the near-wall region, as discussed by Launder
& Tselepidakis (1991).
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Figure 13. The rapid/buoyant part Πθi,2/3 (–©–) from DNS at Ra = 5.4× 105 for i = 1 (a) and
i = 2 (b) compared with the thermal (–4–), mechanical (–�–) and buoyant (–�–) production.

In view of the above discussion we adopt here the simple expansion of equation
(3.21) for the sum of rapid and buoyant terms, which is linear in second moments θui
and uiuj , and includes the mean temperature gradient. The expression can conveniently
be written in terms of production rates:

Π̂θi,2/3 = −c2θP
m
θi − c′2θP th

θi − c3θGθi. (3.22)

Of course, in order to satisfy the basic realizability constraints, coefficients cannot
be constants but are functions of local invariant turbulence properties. It is recalled
that the basic model does not contain the thermal production (c′2θ = 0) and that
the remaining two coefficients are treated as constants. Peeters & Henkes (1992) take
c2θ = c3θ = 0.5 (c(1)

3θ ). The weakness of the basic model is that it yields a zero combined
rapid/buoyant term Πθi,2/3 for the horizontal component, contrary to the DNS, as
shown in figure 13 for Ra = 5.4× 105.

The only non-zero production of the horizontal heat flux is the thermal production
P th
θi . This fact provides yet another justification for including the mean temperature

gradient in the rapid/buoyant model. The model function for c′2θ has been tuned to

match −Π̂θ1,2/3/P
th
θ1 as closely as possible. A polynomial expression in terms of A

appeared to be most suitable. The resulting function,

c′2θ = 6.15A2 − 19.3A3 + 15.0A4, (3.23)

is most influential in the region 0.1 < x/L < 0.5. Figure 14(a) shows that the selected
function brings the model into good agreement with the DNS.

The buoyant-production budget term multiplied by the constant value c3θ = 0.45
(c(2)

3θ ) matches the DNS data at Ra = 5.4 × 105 in the region x/L < 0.05 already

quite well (see figure 14b). A function for c2θ that approximates −(Π̂θ2,2/3 + c′2θP th
θ2 +
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Figure 14. The performance of the new rapid/buoyant model (—; –©–, DNS) at Ra = 5.4× 105

for i = 1 (a) and i = 2 (b). In (b), the thermal (· · ·), mechanical (– –) and buoyant (–·–) contributions
are also distinguished.

c3θGθ2)/P
m
θ2 well, is

c2θ = 1.25A2. (3.24)

Figure 14 shows the resulting rapid/buoyant model, which is close to the DNS
data throughout the channel. Figure 15 shows that the performance of the new
rapid/buoyant model at the higher Rayleigh numbers is somewhat less satisfactory
for the horizontal component.

3.4.3. Model of the wall effect

Equation (3.17) reveals two important properties of the pressure-reflection term.
First, the pressure fluctuation appears inside the integral, which means that the wall
term is recursive and thus proportional to the complete integral expression. Second,
the wall-normal gradient introduces a preference for the horizontal component of Πw

θi ,
as seen in figure 16. Very close to the wall ∂p/∂n ∝ ν∂2un/∂x

2
j indicating a viscous

origin of this contribution, which is insignificant, but outside the viscous sublayer its
effect is not clear. Next, there is the wall-echo effect, a name that originates from the
concept of the reflected mirror image of the volume integral. The wall term permeates
further from the wall, attenuating with the wall distance. Although the Stokes term
as a whole is directly dependent on the wall orientation and its distance, the topology
parameters are inconvenient for modelling flows with complex boundaries and need to
be replaced by flow and turbulence quantities which will reflect appropriately (albeit
indirectly) the wall configuration and its proximity. Of all available parameters, the
stress anisotropy tensor and its invariants seem physically most appropriate, since the
stress anisotropy is directly affected by the wall presence. Fortunately, the total term
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Figure 15. The performance of the new rapid/buoyant model at several Rayleigh numbers. For
x/L < 0.5: model (—, Ra = 5.4× 105; · · ·, Ra = 8.227× 105) evaluated/compared with DNS (–©–,
Ra = 5.4×105; –4–, Ra = 8.227×105). For x/L > 0.5: model (—, Ra = 2×106; · · ·, Ra = 5×106)
evaluated/compared with DNS (–©–, Ra = 2× 106; –4–, Ra = 5× 106).

is relatively small, as shown by DNS data for Ra = 5.4 × 105 in figure 16, together
with the sum of the other parts.

The models that are available in the literature often implement a wall correction
either to parts of or to the total Πθi. Discriminatory suppression of the component
perpendicular to the wall is achieved using the wall distance and the wall unit normal
ni. In principle, this approach can be tuned for simple plane walls; nevertheless,
comparison with the DNS data shows that all available models perform poorly. For
illustration, we have evaluated from DNS data the basic model proposed by Gibson
& Launder 1978 (only for the slow term):

Π̂w
θi,1 = cw

1θΠ̂θj,1fwnjni, (3.25)

fw = min

[∑
walls

k3/2

cwεxn

, 1.4

]
, (3.26)

where cw
1θ = 0.2 and cw = 2.53, after Peeters & Henkes (1992). The function fw is

the one from Hanjalić et al. (1997b). We found that the upper bound is necessary
for obtaining converged simulation results for the vertical channel. Actually, fw will
exceed the upper limit everywhere except close to the walls where it goes to zero.
Originally, the function was designed in conjunction with wall functions to be unity
near a wall (but outside the viscous layer) and decreasing to zero when moving away
from it. This behaviour is clearly not suited for integration up to the wall when
dealing with natural convection. The elliptic relaxation method, proposed by Durbin
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Figure 16. The wall-reflection part Πw
θi (–©–) at Ra = 5.4× 105 for i = 1 (a) and i = 2

(b) compared with the sum of the slow, rapid and buoyant parts (–4–).

(1993), may eliminate the need for topological parameters, but it requires the solution
of additional differential equations for damping functions for each stress and heat
flux component.

Equation (3.25) yields zero Πw
θi for the vertical component and a negligible term for

the horizontal component, as was shown by Dol et al. (1997). In order to eliminate
the topology-dependent parameters in a relatively simple way, while improving the
reproduction of Πw

θi for both components, we devised the following model:

Π̂w
θi = cw

θ |aij |(Π̂θj,1 + Π̂θj,2/3), (3.27)

cw
θ = max (0, 0.58− 0.69A1/2), (3.28)

where the stress-anisotropy tensor is used to differentiate between the horizontal and
vertical components. As shown by figure 17, we were not able to match entirely the
DNS data at Ra = 5.4 × 105 for the horizontal component in the near-wall region
without increasing significantly the model complexity. However, due to the relatively
small magnitude of the wall term, the error will be small. Figure 18 shows good
performance of the new wall model at all four Rayleigh numbers.

3.4.4. The complete model for pressure scrambling

As illustrated above, excellent reproduction of DNS results was achieved for all
parts of Πθi, but what really counts is the performance of the complete model.
We recall here that Π̂θi = Π̂θi,1 + Π̂θi,2 + Π̂θi,3 + Π̂w

θi,1 for the basic model and

Π̂θi = Π̂θi,1 + Π̂θi,2/3 + Π̂w
θi for the present new models. Not surprisingly, the errors

in the new models are mainly caused by the slow part, see figures 8 and 19 for
Ra = 5.4× 105.
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Figure 17. The performance of the new wall-reflection model (—; –©–, DNS) at Ra = 5.4× 105

for i = 1 (a) and i = 2 (b).
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Figure 18. The performance of the new wall model at several Rayleigh numbers.
For an explanation of the lines and symbols, see figure 15.
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Figure 19. The performance of the new pressure-scrambling models (—, using quadratic slow
model; · · ·, using cubic slow model; –©–, DNS) at Ra = 5.4× 105 for i = 1 (a) and i = 2 (b).

Compared with the basic model, shown in figure 20, the new models perform very
well with both slow models. Figure 20 also displays the model of Craft, Graham
& Launder (1993) (their model 4) which performs somewhat better than the basic
model, but is still far from the DNS data. The extra term proportional to the mean
temperature gradient is certainly not negligible for the present flow, especially for
i = 2 where it almost doubles its share in the slow model. The other component
benefits slightly by including the extra term.

Figure 21 shows the performance of the new models at all available Rayleigh
numbers. The predictions for all cases are satisfactory, particularly in the near-wall
region, which is the target of the present study. Small inconsistencies are noticeable
in the central region at the highest two Rayleigh numbers, where the quadratic model
performs best for the vertical component and the cubic model for the horizontal
component. Depending on the models for the other budget terms and the models for
the velocity field, one or the other choice may be preferred, but the difference is not
expected to produce much effect and is believed to be insignificant in the prediction
of the mean-flow properties.

4. Simulations with the new thermal model
The new thermal second-moment closure, denoted by DH, is defined by equations

(3.9), (3.10), (last term omitted), (3.11), (3.13), (3.19) (quadratic and cubic), (3.22),
(3.27) and R = 0.5. It will be compared with the basic-model implementation of
Peeters & Henkes (1992), denoted by PH. The thermal models are implemented
in a standard finite-volume numerical code, together with the mechanical model
of Hanjalić, Jakirlić & Hadžić (1997a), denoted by JH, listed in the Appendix.
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Figure 20. The performance of the basic model (—) and the model of Craft et al. (1993)
(· · ·; –©–, DNS) at Ra = 5.4× 105 for i = 1 (a) and i = 2 (b).
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Figure 21. The performance of the new pressure-scrambling model at several Rayleigh numbers.
For an explanation of the lines and symbols, see figure 12.
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Figure 22. The horizontal heat flux at Ra = 5.4× 105 (a), Ra = 8.227× 105 (b), Ra = 2× 106 (c)
and Ra = 5× 106 (d). The modelling results (—, PH+DNS; · · ·, DH1+DNS; – –, DH2+DNS; –·–,
PH+JH; - - -, DH1+JH) are compared with the DNS data (–©–).

Simulations are then performed to test the abilities of the different models to predict
the turbulent heat flux and temperature variance, compared with the DNS data.

The numerical code solves the discretized versions of the equations for the vertical
velocity component V , temperature T , turbulent kinetic energy k, its dissipation rate
ε, Reynolds stresses u2, v2 and uv, turbulent heat fluxes θu and θv and tempera-
ture variance θ2. Grid-independent solutions were obtained using a numerical grid
consisting of 100 grid points, clustered near the wall. Although a set of 10 coupled
transport equations has to be solved, due to the absence of convection terms each
simulation takes only about one minute of CPU time on a HP-9000/735 workstation
equipped with a single HPPA-7200 (125 MHz) processor. The simulations start from
a reasonably good initial field, such as DNS data, or a previous simulation at a
different Rayleigh number or with a different model.

Figures 22–24 show the predictions for the turbulent heat flux and the temperature
variance at all four Rayleigh numbers. In order to quantify the influence of the
mechanical model on the performance of the complete model, simulations are also
made without the mechanical model. In that case, only the equations for θu, θv and
θ2 are solved while the other variables are frozen at the DNS values interpolated on
the numerical grid. These simulations are denoted in the figures by PH+DNS (basic
model), DH1+DNS (model 1) and DH2+DNS (model 2). The full simulations, in
which the transport equations for all variables are solved, are denoted by PH+JH
(basic model) and DH1+JH (model 1). Model 2 in combination with the model of
Hanjalić et al. (1997a) posed some convergence problems, whereas model 1 proved to
be almost equally as robust as the basic model. In view of the fact that various complex
and mathematically rigorous models, proposed in literature, are usually very difficult
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Figure 23. Similar to figure 22, but for the vertical heat flux.

to use in flows less trivial than the homogeneous turbulence for which they have
been derived, the numerical robustness of model 1 is a very useful feature, opening
prospects for the computation of buoyancy-driven flows of industrial relevance. The
higher numerical stability of the quadratic model eventually makes it preferable to
the cubic model. The full simulation with model 1 at Ra = 5.4 × 105, started from the
DNS field, took approximately 5.4 ms per iteration, which is only 20% longer than
with the basic model. However, due to the fact that the new model requires heavier
under-relaxation, more iterations are needed to reach the convergence criterion,
increasing the total execution time by approximately 70%.

Figures 22(a), 23(a) and 24(a) show that the major defects of the basic model have
been eliminated with model 1: the peaks in the profiles for θv and θ2 are now closely
reproduced. However, it is evident that the influence of the mechanical model on
the thermal variables is significant. At present the effect of buoyancy on the stress
field has been introduced only through the buoyancy production in both the stress
and dissipation equations, but that proved to be insufficient for obtaining predictions
of equally good quality as in a priori computations. The mechanical model, which
was optimized for a range of isothermal shear flows, has to be further extended to
account for the thermal effect on turbulence in the near-wall region, particularly in
the near-wall modification of the coefficients in the modelled pressure–strain term.
This task is left for future research.

Figures 22–24 show that the advantages of the new model are also convincing
for the higher Rayleigh numbers. Only the magnitude of the temperature variance
increases significantly with Ra. The origin of this discrepancy is in the Rayleigh-
number dependence of the thermal-to-mechanical time-scale ratio R, which was kept
constant in the present computations. The near-wall shape and slope of θ2 agrees well
with the DNS for all considered Rayleigh numbers and it is insensitive to the choice
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Figure 24. Similar to figure 22, but for the temperature variance.

of the thermal model or whether the mechanical model is applied. For the turbulent
heat flux, the near-wall slope decreases below the DNS data when the mechanical
model is activated. The same effect is noticed for the vertical component when the
basic model is used instead of the new thermal models. Despite the fact that activating
the mechanical model flattens the peaks of θv and θ2, the space-averaged values are
close to DNS for Ra = 5.4× 105 (θv and θ2) and Ra = 8.227× 105 (θv only). For θv,
this does not hold when the basic model is used.

Dol et al. (1997) show that algebraic models that can be derived for the heat fluxes
by neglecting or approximating transport, are not in themselves serious competitors
to the differential model here derived. Only due to the dominant influence of the
quantities for which transport equations are solved, do the resulting ‘partial’ algebraic
models appear perform comparably to the differential basic model. These observations
stress the importance of solving thermal transport equations equipped with accurate
near-wall models, but also indicate a need to implement the effects of buoyancy in
the mechanical model, which is the ‘backbone’ even for a thermally-driven flow.

5. Conclusions
Direct Numerical Simulations of a thermally driven flow between two infinite

vertical plates have been analysed focusing on the behaviour and scaling of second
thermal moments and their budget in the near-wall and central channel regions. The
data revealed some interesting features which distinguish the thermally driven flows
from the forced isothermal flows in similar configurations. A major difference appears
in the multiple production of the turbulent stress (mean shear and buoyancy) and
of the heat flux (mean shear, mean temperature gradient and buoyancy), which are
all of the same order of magnitude. Also, the mechanical production (mean shear) is
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negative close to the wall for all second moments (changing sign around the mean
velocity maximum) whereas all stress and flux components are everywhere positive
(except for a negligible negative shear stress very close to the wall). All these findings
invalidate linear eddy-viscosity and eddy-diffusivity assumptions, indicating a need to
employ the second-moment closure approach as a minimum modelling level. Another
important feature is that the major sink of the turbulent heat flux is the pressure
scrambling, whereas the molecular dissipation is negligible, except very close to the
wall where it balances molecular transport. A striking difference in comparison with
the stress budget in a plane channel is that the return-to-isotropy (slow) term is the
dominant constituent of the pressure-scrambling process for all heat-flux components
as well as for all stresses, except for the shear stress where the rapid term is the
largest.

Based on the DNS of turbulent natural convection in a differentially heated vertical
channel, a differential thermal second-moment closure has been developed. The model
approximates all separate unclosed budget terms of the transport equations for the
turbulent heat flux and temperature variance very well, especially in the important
near-wall region. It contains no wall distances nor wall normals and is thus suitable
for general flows bounded by walls of complex topologies. The DNS data at the
lowest available Rayleigh number (5.4 × 105) have been used for model calibration,
but the model is shown to reproduce almost equally well the flows at other Rayleigh
numbers (up to 5× 106). The new thermal model proves to be a major improvement
when compared with the current practice (e.g. the thermal part of the basic model).
Major advantages are the very satisfactory term-by-term prediction of budgets for
the heat flux and temperature variance and exclusive use of local flow and turbulence
parameters allowing complex wall topology. All these improvements are achieved with
a marginal increase in model complexity which makes no special demands on model
implementation into general computer codes.

However, the true generality of the model can only be proved when successfully
applied to different types of problems, for example Rayleigh–Bénard convection, or
to flows in more complex domains. Another weakness is the mechanical model: the
present research indicated that the advantages of the thermal model are diminished
when used together with the existing mechanical models, which have not been well
tested in thermally driven flows. This is an urgent task, which was beyond the scope
of present investigation. It is believed, however, that the available DNS database and
principles adopted in the present work in modelling the heat flux and temperature
variance can serve as a guidance for improvement of the modelling of buoyancy
effects on the mechanical turbulence.

This research was supported by the Dutch Foundation for Fundamental Research
on Matter (FOM) with financial aid from the Dutch Technology Foundation (STW).

Appendix. The mechanical second-moment closure
This Appendix summarizes the differential second-moment closure of Hanjalić et

al. (1997a) with the addition of buoyancy terms (production and pressure strain).
Developed and optimized for a range of equilibrium and non-equilibrium attached
and separating isothermal flows, it only provides a closure of the transport equations
for the Reynolds stress uiuj and the energy dissipation rate. In the present study, this
mechanical model is used together with the (new) thermal model in order to close the
complete set of equations.
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The exact equation for uiuj is

Duiuj
Dt

=
∂

∂xk

ν ∂uiuj∂xk︸ ︷︷ ︸
Dν
ij

−uiujuk︸ ︷︷ ︸
Dt
ij


︸ ︷︷ ︸

Dij

−
(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)
︸ ︷︷ ︸

Pij

−(giβθuj + gjβθui)︸ ︷︷ ︸
Gij

−
(
∂p

∂xi

uj

ρ
+
∂p

∂xj

ui

ρ

)
︸ ︷︷ ︸

Πij

− 2ν
∂ui

∂xk

∂uj

∂xk︸ ︷︷ ︸
εij

(A 1)

where the terms in boxes require modelling.
As the pressure diffusionDp

ij = −(∂puj/∂xi+∂pui/∂xj)/ρ is not modelled separately,

the model for the total pressure term Πij = Φij + Dp
ij is assumed to retain the

redistributive character:

Π̂ij = Π̂ij,1 + Π̂ij,2 + Π̂ij,3 + Π̂w
ij,1 + Π̂w

ij,2, (A 2)

Π̂ij,1 = −c1εaij , (A 3)

Π̂ij,2 = −c2(Pij − 1
3
Pkkδij), (A 4)

Π̂ij,3 = −c3(Gij − 1
3
Gkkδij), (A 5)

Π̂w
ij,1 = cw

1

ε

k
(ukulnknlδij − 3

2
uiuknknj − 3

2
ujuknkni)fw, (A 6)

Π̂w
ij,2 = cw

2 (Π̂kl,2nknlδij − 3
2
Π̂ik,2nknj − 3

2
Π̂jk,2nkni)fw, (A 7)

fw = min

[∑
walls

k3/2

cwεxn

, 1.4

]
. (A 8)

The constants are given in table 6. Modifications for the near-wall proximity and
satisfying the two-component limit are achieved by expressing the coefficients as func-
tions of invariant turbulence parameters: the turbulence Reynolds number (viscous
effects), stress invariants A2, A3 and A, and their analogues for the stress-dissipation
tensor εij , i.e. E2, E3 and E:

c1 = c+
√
AE2, c3 = c2 = 0.8

√
A, (A 9), (A 10)

cw
1 = max (1− 0.7c, 0.3), cw

2 = min (A, 0.3), c = 2.5AF1/4f, (A 11), (A 12), (A 13)

F = min (0.6, A2), f = min

[(
Ret

150

)3/2

, 1

]
, (A 14), (A 15)

Ret = k2/νε. (A 16)

Sufficiently far away from a wall, the functions take constant values that are close
to the typical high-Ret values from the literature. However, in the near-wall region,
where the turbulent Reynolds number Ret is relatively low and the anisotropy high,
the functions will become effective.
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cuiuj cw cε cε1 cε2 cε3 c′ε
0.22 2.5 0.18 1.44 1.92 1 0.125

Table 6. The constants of the mechanical model.

The model for the stress-dissipation rate is based on the homogeneous–
inhomogeneous decomposition the homogeneous part of which εuiuj/k is modified to
obtain the correct near-wall behaviour:

−ε̂ij = −(1− fs)
2
3
εδij − fsε

∗
ij , (A 17)

−ε∗ij = − ε
k

uiuj + (uiuknknj + ujuknkni + ukulnknlninj)fd

1 + 3
2
(ulum/k)nlnmfd

, (A 18)

fs = 1−√AE2, fd =
1

1 + 1
10

Ret

. (A 19), (A 20)

A rationale for this model and illustrations of its performance in equilibrium and
separated flows are provided by Hanjalić & Jakirlić (1993) and Hanjalić et al. (1997a).

The exact equation for ε = 1
2
εkk can be written as

Dε

Dt
=

∂

∂xk

ν
∂ε

∂xk︸ ︷︷ ︸
Dν
ε

−ε′uk︸ ︷︷ ︸
Dt
ε

−2ν

ρ

∂p

∂xl

∂uk

∂xl︸ ︷︷ ︸
Dp
ε


︸ ︷︷ ︸

Dε

−εkl ∂Uk

∂xl︸ ︷︷ ︸
P 1
ε

−2ν
∂um

∂xk

∂um

∂xl

∂Uk

∂xl︸ ︷︷ ︸
P 2
ε

−2νuk
∂um

∂xl

∂2Um

∂xk∂xl︸ ︷︷ ︸
P 3
ε

−ε′kl ∂uk∂xl︸ ︷︷ ︸
P 4
ε

− 2ν

ν + α
gkβεθk︸ ︷︷ ︸

Gε

− 2

(
ν
∂2um

∂xk∂xl

)2

︸ ︷︷ ︸
Y

(A 21)

where ε′ij = 2ν(∂ui/∂xk)(∂uj/∂xk) and ε′ = 1
2
ε′kk and with wall boundary condition

εw = 2ν(∂k1/2/∂xn)2
w. Again, the terms in boxes require modelling.

The only other term that is modelled separately is P 3
ε , applying the Daly & Harlow

gradient-diffusion hypothesis for uk(∂um/∂xl):

P̂ 3
ε = 2νc′ε

k

ε
ukun

∂2Um

∂xl∂xn

∂2Um

∂xk∂xl
. (A 22)

As in the standard k-ε model, all the other unclosed terms are lumped together and
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modelled jointly:

P̂ 1
ε + P̂ 2

ε + P̂ 4
ε + Ĝε − Ŷ = cε1(Pkk + cε3Gkk)

ε

2k
− cε2fε ε̃ε

k
, (A 23)

fε = 1− cε2 − 1.4

cε2
exp

[
−
(

Ret

6

)2
]
, (A 24)

ε̃ = ε− 2ν

(
∂k1/2

∂xk

)2

. (A 25)

Equal weight of shear and buoyant production is assumed, which was found appropri-
ate for natural convection along heated/cooled vertical walls. The modelled equation
contains two more invariant terms, which are not shown, to enhance the irrotational-
strain production and to suppress the excessive scale growth in non-equilibrium flows,
which are considered as unimportant for the present flow problem.

The turbulent velocity diffusion is modelled in both transport equations using the
Daly & Harlow expression:

D̂t
φ =

∂

∂xk

[
cφ
k

ε
ukul

∂φ

∂xl

]
(A 26)

where φ stands for uiuj and ε, respectively.
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